Rapid and Sensitive Detection of p53 Based on DNA-Protein Binding Interactions Using Silver Nanoparticle Films and Microwave Heating.

نویسندگان

  • Muzaffer Mohammed
  • Kadir Aslan
چکیده

Tumor detection can be carried out via the detection of proteins, such as p53, which is known to play vital role in more than 50% of all cancers affecting humans. Early diagnosis of tumor detection can be achieved by decreasing the lower detection limit of p53 bioassays. Microwave-accelerated bioassay (MAB) technique, which is based on the use of circular bioassay platforms in combination with microwave heating, is employed for the rapid and sensitive detection of p53 protein. Direct sandwich ELISA was constructed on our circular bioassay platforms based on DNA-protein binding interactions. Colorimetric and fluorescence based detection methods were used for room temperature bioassay (control bioassay; total bioassay time is 27 hours) and bioassay using microwave heating (i.e., the MAB technique; total bioassay time is 10 minutes). In the colorimetric based detection, a very high background signal due to the non-specific binding of proteins for the bioassay carried out at room temperature and a LLOD of 0.01 ng/mL for p53 was observed using the MAB technique. The LLOD for the fluorescence-based detection using the MAB technique was found to be 0.01 ng/mL. The use of circular bioassay platforms in the MAB technique results in microwave-induced temperature gradient, where the specific protein binding interactions are significantly accelerated; thereby reducing the background signal and the lower limit of detection of p53 protein.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and sensitive electrochemical detection of DNA with Silver nanoparticle dispersed poly (9, 9-dioctylfluorene-ran-phenylene) nanocomposites

In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver nanoparticle (Ag) embedded poly(9,9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive platform and DNA hybridization technique. The new polymer was synthesized from 9,9-dioctylfluorene and 1,3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reacti...

متن کامل

Rapid and sensitive detection of troponin I in human whole blood samples by using silver nanoparticle films and microwave heating.

BACKGROUND Cardiovascular diseases are among the leading causes of mortality in developed countries. It is widely recognized that troponin I (TnI) can be used for the assessment of a myocardial infarction. METHODS We investigated the use of the microwave-accelerated and metal-enhanced fluorescence (MA-MEF), a technique based on the combined use of low-power microwave heating, silver nanoparti...

متن کامل

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence.

A new, fast, and sensitive DNA hybridization assay platform based on microwave-accelerated metal-enhanced fluorescence (MAMEF) is presented. Thiolated oligonucleotide anchors were immobilized onto silver nanoparticles on a glass substrate. The hybridization of the complementary fluorescein-labeled DNA target with the surface-bound oligonucleotides was completed within 20 s upon heating with low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano biomedicine and engineering

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2014